viernes, 26 de septiembre de 2014

Simuladores de Red.

TIPOS DE SIMULADORES DE REDES

AdventNet 6 

La herramienta de simulación AdventNet comprende un simulador de agente y red con una interfaz para el usuario muy fácil de usar para el testeo, entrenamiento y demostración de aplicaciones de gestión de redes. El simulador de red habilita la simulación en una sola PC de red de 50.000 SNMP (v1, v2c, v3), TL1, TFTP, FTP Telnet y mecanismosCisco IOS. Brinda además el editor de topología para establecer inter conexiones a través de routers, switches y otros aparatos de red y ver la relación topológica entre los aparatos.


La herramienta de simulación proporciona grabador de redes y grabador de trampas y reproduce redes reales SNMP y trampas y crea simulaciones de aparatos reales de tu red. Los mecanismos pueden configurarse en tiempo de ejecución, tanto en forma individual como colectiva.

   


La capacidad de simular más de 50.000 agentes simultaneamente para testear escalabilidad, simulación de trampas para testeo de gestión de desperfectos, configuración de los valores de aparatos y tipos de simulación para los test de rendimiento, simulación de conducta para comprobar escenarios realistas / negativos a través de los aparatos de la red e interfaces gráficas fáciles de usar permiten una simulación con todas las de la ley de redes grandes.



Shunra VE Desktop

Shunra VE Desktop es un programa herramienta de simulación de redes y es una solución de pruebas ideal para cualquiera concerniente con el impacto de una red en el desempeño de aplicaciones. Simula vínculos de redes de área amplia, incluyendo latencia, fluctuaciones, ancho de banda y pérdida de paquetes - habilitandote para probar aplicacines bajo una variedad de condiciones de red actuales y potenciales - directamente desde la computadora de escritorio. Con ésta vista, tu puedes encontrar y reparar rápidamente problemas de desempeño relacionados a aplicación y redes, antes y después de desplegarse en producción.

                                                                                   



Jimsim 1.0

El Jimsim es un Simulador de Red que simula hasta tres direccionadors virtuales en su sistema. Ya que los direccionadors son todos virtuales, ellos se comunican sobre redes virtuales dentro del programa. De este modo, no hay ninguna preocupación sobre causar problemas en su verdadera red. Usted usa un programa telnet para conectar a los direccionadors virtuales, a quién todos tienen una interface de línea de orden Cisco-parecida.

La versión 1.0 apoya tres direccionadors virtuales, interfaces de Ethernet, encaminamiento estática, eigrp básico, CDP, sonido metálico, traceroute, ajuste, finalización de línea de orden, carteles, contraseñas, y varias órdenes de espectáculo.



FLAN (F- Links And Nodes)
Es un software desarrollado con el lenguaje de programación
Java y se distribuye con licencia pública GNU. Se considera que pertenece al grupo de los simuladores de propósito general, ya que por medio de Java se pueden crear y configurar nuevos dispositivos, aplicaciones o protocolos de red, aun si no están incluidos dentro de las librerías del programa, inclusive se pueden realizar modificaciones al código fuente de FLAN ( F- Links And Nodes).

FLAN es una herramienta de simulación que permite el diseño, la construcción, y la prueba de una red de comunicaciones en un ambiente simulado. El programa hace el análisis de las redes asociando su estructura basada en nodos y enlaces, con bloques simples, por medio de loscuales se puede  entender el funcionamiento especialmente de los protocolos de enrutamiento que maneja la capa de red.

PARA QUE SE UTILIZA PACKET TRACER


Packet Tracer es la herramienta de aprendizaje y simulación de redes interactiva para los instructores y alumnos de Cisco CCNA. Esta herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. Packet Tracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA.
Este producto tiene el propósito de ser usado como un producto educativo que brinda exposición a la interfaz comando – línea de los dispositivos de Cisco para practicar y aprender por descubrimiento.

VENTANA DE PACKET TRACER (PARTES)

Para que podamos entender como funciona voy a explicar las 5 partes importantes que tiene su interface.


  1. Vamos a tener los equipos de red, pc, servidores y hasta los distintos tipo de cable o medios. Desde un simple router hasta los equipos CISCO más caros están aquí.
  2. En la parte 2 nos dará información de como funciona la red en tiempo real o simulación donde podemos ver el comportamiento de la red paso a paso.
  3. Este panel de herramientas nos facilitara arrastrar equipos, eliminarlos, seleccionar grupos de dispositivos.
  4. Se divide en una parte lógica y una física, la lógica es la que más utilizaremos dado que es donde vamos a crear la topología de la red, la física nos servirá para armar conexiones entre distintas zonas .
  5. Espacio de trabajo, aquí colocaremos los equipos de una red para que se comuniquen entre sí.

COMO CREAR UNA LAN EN PACKET TRACER


Ejecutamos el programa Packet Tracer. Hacemos click en la pestaña de conexiones y posteriormente en: “Escoger tipo de conexión automáticamente.” En este caso seleccione el modelo 2960-24TT, hacemos click en el switch y arrastramos hasta enlazarlo con el dispositivo genérico. Ahora tenemos que asignar IPs a nuestros dispositivos, para ello hacemos click en el dispositivo lo cual nos llevara a esta ventana Hacemos click en la pestaña, “desktop” o “escritorio”. Y posteriormente en “IP configuration” o “configuración de ip”. Nuestra pantalla debe quedar de la siguiente manera… nótese que los pequeños puntos naranjas que se encontraban junto al switch cambiaron su color a verde, indicando que se ha establecido la conexión. Para comprobar la conexión enviamos un mensaje de verificación, haciendo click en la casilla de mensajes y haciendo click entre las pc que deseamos probar.

MODOS DE OPERACIÓN EN PACKET TRACER

En el Modo Topology, se realizan tres tareas principales, la primera de ellas
es el diseño de la red mediante la creación y organización de los dispositivos;
por consiguiente en este modo de operación se dispone de un área de
trabajo y de un panel de herramientas en donde se encuentran los

elementos de red disponibles en Packet Tracer.

                                                                            


En el Modo Simulation, se crean y se programan los paquetes que se van a

transmitir por la red que previamente se ha modelado.



Dentro de este modo de operación se visualiza el proceso de
transmisión y recepción de información haciendo uso de un panel de
herramientas que contiene los controles para poner en marcha la
simulación.
Una de las principales características del modo de operación simulation,
es que permite desplegar ventanas durante la simulación, en las cuales
aparece una breve descripción del proceso de transmisión de los paquetes;
en términos de las capas del modelo OSI.






Y finalmente el Modo de operación en tiempo real, está diseñado para enviar pings o mensajes SNMP, con el objetivo de reconocer los 
dispositivos de la red que están activos, y comprobar que se puedan
transmitir paquetes de un hosts a otro(s) en la red. 


Dentro del modo Realtime, se encuentra el cuadro de registro Ping log, en 
donde se muestran los mensajes SNMP que han sido enviados y se detalla 
además el resultado de dicho proceso; con base en este resultado se puede 
establecer cuál o cuales de los terminales de la red están inactivos, a 
causa de un mal direccionamiento IP, o diferencias en el tamaño de bits de los 
paquetes. 


-ROUTERS UTILIZADOS EN PT
-TIPOS DE SWITCHES EN PT
-DISPOSITIVOS INALAMBRICOS
-TIPOS DE CONEXIONES DIPONIBLES
-DISPOSITIVOS TERMINALES
-DISPOSITIVOS ADICIONALES








VENTAJAS Y DESVENTAJAS DE PACKET TRACER







REGLAS DE INTERCONEXION ENTRE DISPOSITIVOS EN PACKET TRACER



Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:



Cable Recto: Siempre que conectemos dispositivos que funcionen en diferente capa del modelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).

Cable Cruzado: Siempre que conectemos dispositivos que funcionen en la misma capa del modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub a Switch/Hub, de Router a Router).

Interconexión de Dispositivos

Una vez que tenemos ubicados nuestros dispositivos en el escenario y sabemos que tipo de medios se utilizan entre los diferentes dispositivos lo único que nos faltaría sería interconectarlos. Para eso vamos al panel de dispositivos y seleccionamos “conecciones” y nos aparecerán todos los medios disponibles.


Una vez que seleccionamos el medio para interconectar dos dispositivos y vamos al escenario el puntero se convierte en un conector. Al hacer click en el dispositivo nos muestra las interfaces disponibles para realizar conexiones, hacemos click en la interface adecuada y vamos al dispositivo con el cual queremos conectar y repetimos la operación y quedan los dispositivos conectados.

miércoles, 24 de septiembre de 2014

Topologias de redes

BUS

Una red o topología en forma de Bus o canal de difusión es un camino de comunicación bidireccional con puntos de terminación bien definidos. La señal se propaga a ambos lados del emisor hacia todas las estaciones conectadas al Bus hasta llegar a las terminaciones del mismo.Así, cuando una estación trasmite su mensaje alcanza a todas las estaciones, por esto el Bus recibe el nombre de canal de difusión. Otra propiedad interesante es que el Bus actúa como medio pasivo y por lo tanto, en caso de extender la longitud de la red, el mensaje no debe ser regenerado por repetidores (los cuales deben ser muy fiables para mantener el funcionamiento de la red). En este tipo de topología cualquier ruptura en el cable impide la operación normal y es muy difícil de detectar. Por el contrario, el fallo de cualquier nodo no impide que la red siga funcionando normalmente, lo que permite añadir o quitar nodos a la red sin interrumpir su funcionamiento.


VENTAJAS DE BUS
  • Es muy sencillo el trabajo que hay que hacer para agregar una computadora a la red.
  • Si algo se daña, o si una computadora se desconecta, esa falla es muy barata y fácil de arreglar.
  • Es muy barato realizar todo el conexionado de la red ya que los elementos a emplear no son costosos.
  • Los cables de Internet y de electricidad pueden ir juntos en esta topología.


DESVENTAJAS DE BUS
  • Si un usuario desconecta su computadora de la red, o hay alguna falla en la misma como una rotura de cable, la red deja de funcionar.
  • Las computadoras de la red no regeneran la señal sino que se transmite o es generada por el cable y ambas resistencias en los extremos
  • En esta topología el mantenimiento a través del tiempo que hay que hacer es muy alto (teniendo en cuenta el esfuerzo de lo que requiere la mano de obra).
  • La velocidad en esta conexión de red es muy baja.



ANILLO

Esta topología conecta a las computadoras con un solo cable en forma de circulo. Con diferencia de la topología bus, las puntas no están conectadas con un terminados. Todas las señales pasan en una dirección y pasan por todas las computadoras de la red. Las computadoras en esta topología funcionan como repeaters, porque lo que hacen es mejorar la señal. Retransmitiéndola a la próxima computadora evitando que llegue débil dicha señal. La falla de una computadora puede tener un impacto profundo sobre el funcionamiento de la red. 
         La principal ventaja de la red de anillo es que se trata de una arquitectura muy sólida, que pocas veces entra en conflictos con usuarios.


VENTAJAS DE ANILLO
  • Fácil de instalar y reconfigurar.
  • Para añadir o quitar dispositivos solamente que hay que mover dos conexiones.
  • Tiene una arquitectura muy compacta.
  • El rendimiento no se declina.


DESVENTAJAS DE ANILLO
  • Tiene restricciones en cuanto a la longitud del anillo.
  • Todas las señales van en una sola dirección.
  • Cuando una computadora falla, altera toda la red.


ESTRELLA

Una red en estrella es una red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste. Los dispositivos no están directamente conectados entre sí, además de que no se permite tanto tráfico de información. Dada su transmisión, una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
Se utiliza sobre todo para redes locales. La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología. El nodo central en éstas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes de usuarios.


VENTAJAS DE ESTRELLA
  • Posee un sistema que permite agregar nuevos equipos fácilmente.
  • Reconfiguración rápida.
  • Fácil de prevenir daños y/o conflictos.
  • Centralización de la red.
  • No se desconecta nunca.


DESVENTAJAS DE ESTRELLA
  • Si el Hub (repetidor) o switch central falla, toda la red deja de transmitir.
  • Es costosa, ya que requiere más cable que las topologías en bus o anillo.
  • El cable viaja por separado del concentrador a cada computadora.


ARBOL

La red en árbol es una topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un nodo central. En cambio, tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos. Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.
La topología en árbol puede verse como una combinación de varias topologías en estrella. Tanto la de árbol como la de estrella son similares a la de bus cuando el nodo de interconexión trabaja en modo difusión, pues la información se propaga hacia todas las estaciones, solo que en esta topología las ramificaciones se extienden a partir de un punto raíz (estrella), a tantas ramificaciones como sean posibles, según las características del árbol.



TELARAÑA

Las topologías de telaraña están inmediatamente con el concepto de rutas. A diferencia de todas las topologías anteriores, los mensajes enviados en una red de telaraña pueden tomar cualquiera de las muchas rutas posibles para llegar a su destino.
Algunos WANs (Redes de Cobertura Amplia), como la internet emplean las rutas de telaraña. En cada parte de la telaraña existe un equipo de cómputo el cual recibe y envía información.
La ventaja de esta topología es la fiabilidad frente a fallas, si una computadora falla no afecta a las demás, tiene grandes posibilidades de reconfiguración y permite tráficos elevados de información con retardos pequeños.

Tipos de comunicación de redes alámbricas e inalámbricas

TIPO DE CABLES UTILIZADOS EN REDES ALÁMBRICAS

Los tipos de cable más utilizados en redes alámbricas son:


Cable coaxial.

El cable coaxialcoaxcable o coax, es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla, blindaje o trenza, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante (también denominada chaqueta exterior).
El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.
Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.
A continuación les dejo una imagen de los componentes de este cable:

Cable de par trenzado sin apantallar (UTP).
El UTP, con la especificación 10BaseT, es el tipo más conocido de cable de par trenzado y ha sido el cableado LAN más utilizado en los últimos años. El segmento máximo de longitud de cable es de 100 metros.
Consta de 2 hilos de cobre aislados, las especificaciones dictan el numero de entrelazados permitidos por pie de cable; el numero de entrelazados depende del objetivo con el que se instale el cable.


Cable de par trenzado apantallado (STP).
Utiliza una envoltura con cobre trenzado, mas protectora de mayor calidad que la usada en el cable UTP. STP también utiliza una lamina rodeando cada uno de los pares de hilos, ofrece un excelente apantallamiento en los STP para proteger los datos transmitidos de intermodulaciones exteriores, lo permite soportar mayores tasas de transmisión que los UTP a distancias mayores.Combina las técnicas de blindado y de trenzado de cables. Si se instala correctamente brinda una resistencia excelente ante la interferencia electromagnética con la interferencia de radio frecuencia, sin que aumente el peso o tamaño del cable. Este tipo de cable debe estar conectado a tierra en uno de sus extremos, e lo contrario puede generar una fuente de problemas, ya que permite que el blindaje actúe como antena, absorbiendo señal de otros cables y de fuente de ruidos eléctrico proveniente del exterior del cable. Puede tenderse por tan grandes distancias como otros medios de networking sin realizar amplificaciones.


Cable de fibra óptica.
Un cable de fibra óptica está compuesto por un grupo de fibras ópticas por el cual se transmiten señales luminosas. Las fibras ópticas comparten su espacio con hiladuras de aramida que le confieren la necesaria resistencia a la tracción.
Los cables de fibra óptica proporcionan una alternativa sobre los coaxiales en la industria de la electrónica y las telecomunicaciones. Así, un cable con 8 fibras ópticas tiene un tamaño bastante más pequeño que los utilizados habitualmente, puede soportar las mismas comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos, todo ello con una distancia entre repetidores mucho mayor.

Cable multipar.
El cable multipar trenzado es un tipo de cable multipar que se viene utilizando tras el crecimiento del tráfico telefónico. Algunos solamente tienen dos pares en su interior, pero otros pueden constar de docenas o cientos.Es aquel formado por grupos de 2 hilos de material conductor, de grosores entre 0,3 mm y 3 mm, recubiertos de plástico protector.En su composición se da un elevado número de pares de cobre, generalmente múltiplo de 25.Principalmente son utilizados para la conexión física de equipos de telefonía, en redes de datos, como las LAN, que es la interconexión entre varios ordenadores y periféricos.


TÉCNICA DE COMUNICACIÓN EN REDES INALAMBRICAS

Los componentes inalámbricos se utilizan para la conexión a redes en distancias que hacen que el uso de adaptadores de red y opciones de cableado estándares sea técnica o económicamente imposible. Las redes inalámbricas están formadas por componentes inalámbricos que se comunican con LANS. Excepto por el hecho de que no es un cable quién conecta los equipos, una red inalámbrica típica funciona casi igual que una red con cables: se instala en cada equipo un adaptador de red inalámbrico con un transceptor (un dispositivo que transmite y recibe señales analógicas y digitales). Los usuarios se comunican con la red igual que si estuvieran utilizando un equipo con cables. 
Salvo por la tecnología que utiliza, una red inalámbrica típica funciona casi igual que una red de cables: se instala en cada equipo un adaptador de red inalámbrico con un transceptor, y los usuarios se comunican con la red como si estuvieran utilizando un equipo con cables.Existen dos técnicas habituales para la transmisión inalámbrica en una LAN: transmisión por infrarrojos y transmisión de radio en banda estrecha. 


 

  • Transmisión por infrarrojos 
Funciona utilizando un haz de luz infrarroja que transporta los datos entre dispositivos. Debe existir visibilidad directa entre los dispositivos que transmiten y los que reciben; si hay algo que bloquee la señal infrarroja, puede impedir la comunicación. Estos sistemas deben generar señales muy potentes, ya que las señales de transmisión débiles son susceptibles de recibir interferencias de fuentes de luz, como ventanas.

 
 
  • Transmisión vía radio en banda estrecha 
El usuario sintoniza el transmisor y el receptor a una determinada frecuencia. La radio en banda estrecha no requiere visibilidad directa porque utiliza ondas de radio. Sin embargo la transmisión vía radio en banda estrecha está sujeta a interferencias de paredes de acero e influencias de carga. La radio en banda estrecha utiliza un servicio de suscripción. Los usuarios pagan una cuota por la transmisión de radio.
 Una transmisión digital, a diferencia de la transmisión analógica de RTC. Las líneas RDSI deben ser utilizadas tanto en el servidor como en el sitio remoto. Además, debemos instalar un módem RDSI tanto en el servidor como en el cliente remoto.Ampliación sobre el intercambio telefónico local RDSI no es simplemente una conexión punto-a-punto. Las redes RDSI se amplían desde el intercambio telefónico local al usuario remoto e incluyen todas las telecomunicaciones y equipo de conmutación que subyace entre ellos. Módem RDSI El equipo de acceso remoto telefónico a redes está formado por un módem RDSI tanto para el cliente como el servidor de acceso remoto. RDSI ofrece una comunicación más rápida que RTC, comunicándose a velocidades superiores a 64 Kbps.


lunes, 22 de septiembre de 2014

Tipos de redes de acuerdo a su cobertura geográfica

LAN (RED DE ÁREA LOCAL)

LAN significa Red de área local. Es un grupo de equipos que pertenecen a la misma organización y están conectados dentro de un área geográfica pequeña a través de una red, generalmente con la misma tecnología (la más utilizada es Ethernet).
Una red de área local es una red en su versión más simple. La velocidad de transferencia de datos en una red de área local puede alcanzar hasta 10 Mbps (por ejemplo, en una red Ethernet) y 1 Gbps (por ejemplo, en FDDI o Gigabit Ethernet). Una red de área local puede contener 100, o incluso 1000, usuarios.

CAN (RED DE ÁREA CAMPUS)

Una red de área de campus (CAN) es una red de computadoras que conecta redes de área local a través de un área geográfica limitada, como un campus universitario, o una base militar. Puede ser considerado como una red de área metropolitana que se aplica específicamente a un ambiente universitario. Por lo tanto, una red de área de campus es más grande que una red de área local, pero más pequeña que una red de área amplia.
En un CAN, los edificios de una universidad están conectados usando el mismo tipo de equipo y tecnologías de redes que se usarían en un LAN. Además, todos los componentes, incluyendo conmutadores, enrutadores, cableado, y otros, le pertenecen a la misma organización.
Una CAN es una colección de LANs dispersadas geográficamente dentro de un campus (universitario, oficinas de gobierno, maquilas o industrias) pertenecientes a una misma entidad en una área delimitada en kilómetros.

MAN (RED DE ÁREA METROPOLITANA)

Una red de área metropolitana (Metropolitan Area Network o MAN, en inglés) es una red de alta velocidad que da cobertura en un área geográfica extensa, proporcionando capacidad de integración de múltiples servicios mediante la transmisión de datos, voz y vídeo, sobre medios de transmisión tales como fibra óptica y par trenzado (MAN BUCLE), la tecnología de pares de cobre se posiciona como la red más grande del mundo una excelente alternativa para la creación de redes metropolitanas, por su baja latencia (entre 1 y 50 ms), gran estabilidad y la carencia de interferencias radioeléctricas, las redes MAN BUCLE, ofrecen velocidades de 10 Mbit/s ó 20 Mbit/s, sobre pares de cobre y 100 Mbit/s, 1 Gbit/s y 10 Gbit/s mediante fibra óptica.
Otra definición podría ser: Una MAN es una colección de LANs o CANs dispersas en una ciudad (decenas de kilómetros). Una MAN utiliza tecnologías tales como ATM, Frame Relay, xDSL (Digital Subscriber Line), WDM (Wavelenght Division Modulation), ISDN, E1/T1, PPP, etc. para conectividad a través de medios de comunicación tales como cobre, fibra óptica, y microondas.

WAN (RED DE ÁREA AMPLIA)

Una red de área amplia,WAN, por las siglas de (wide area network en inglés), es una red de computadoras que abarca varias ubicaciones físicas, proveyendo servicio a una zona, un país, incluso varios continentes. Es cualquier red que une varias redes locales, llamadas LAN, por lo que sus miembros no están todos en una misma ubicación física.
Muchas WAN son construidas por organizaciones o empresas para su uso privado, otras son instaladas por los proveedores de internet (ISP) para proveer conexión a sus clientes.
Las redes WAN pueden usar sistemas de comunicación vía radioenlaces o satélite.

WPAN (RED DE ÁREA PERSONAL)

Wireless Personal Area NetworkRed Inalámbrica de Área Personal Red de área personal o Personal area network es una red de computadoras para la comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a internetteléfonos celulares,PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal.

viernes, 12 de septiembre de 2014

Metodos de transmision de datos

-Según la manera de la transmisión.

Banda base

El término banda base se refiere a la banda de frecuencias producida por un transductor, tal como un micrófono, un manipulador telegráfico u otro dispositivo generador de señales que no es necesario adaptarlo al medio por el que se va a trasmitir.
Banda base es la señal de una sola transmisión en un canal, banda ancha significa que lleva más de una señal y cada una de ellas se transmite en diferentes canales, hasta su número máximo de canal.
En los sistemas de transmisión, la banda base es generalmente utilizada para modular una portadora. Durante el proceso de demodulación se reconstruye la señal banda base original. Por ello, podemos decir que la banda base describe el estado de la señal antes de la modulación y de la multiplexación y después de la demultiplexación y demodulación.
Las frecuencias de banda base se caracterizan por ser generalmente mucho más bajas que las resultantes cuando éstas se utilizan para modular una portadora o subportadora. Por ejemplo, es señal de banda base la obtenida de la salida de video compuesto de dispositivos como grabadores/reproductores de video y consolas de juego, a diferencia de las señales de televisión que deben ser moduladas para poder transportarlas vía aérea (por señal libre o satélite) o por cable.

En transmisión de facsímil, la banda base es la frecuencia de una señal igual en ancho de banda a la comprendida entre la frecuencia cero y la frecuencia máxima de codificación. En otras palabras, si el espectro de frecuencia de una señal se localiza alrededor de la frecuencia f = 0 Hz, se dice que la señal es de “banda base”.

Banda ancha
El término banda ancha comúnmente se refiere al acceso de alta velocidad a Internet. Este término puede definirse simplemente como la conexión rápida a Internet que siempre está activa. Permite a un usuario enviar correos electrónicos, navegar en la web, bajar imágenes y música, ver videos, unirse a una conferencia vía web y mucho más.

El acceso se obtiene a través de uno de los siguientes métodos:
  • Línea digital del suscriptor (DSL)
  • Módem para cable
  • Fibra
  • Inalámbrica
  • Satélite
  • Banda ancha a través de las líneas eléctricas (BPL)

La banda ancha no es un concepto estático, toda vez que las velocidades de acceso a Internet se aumentan constantemente. Las velocidades se miden por bits por segundo, por ejemplo, kilobits por segundo (kbit/s) o megabits por segundo (Mbit/s). La velocidad mínima para considerarse banda ancha varía entre los países e, incluso, dentro de un país la autoridad puede considerar como banda ancha un valor de velocidad distinto de aquel que el operador estima como banda ancha. Se ha propuesto que una manera para determinar la existencia de banda ancha es aquella basada en los servicios a los que se puede tener acceso (p. ej., rápida descarga de archivos de Internet, calidad de audio equivalente a un CD, servicios de voz interactivos). La amplia disponibilidad de banda ancha se considera un factor para la innovación, la productividad, el crecimiento económico y la inversión extranjera.
Al concepto de banda ancha hay que atribuirle otras características, además de la velocidad, como son la interactividaddigitalización y conexión o capacidad de acceso (función primordial de la banda ancha).

-Según la información.

Asíncrona
La transmisión asíncro da lugar cuando el proceso de sincronización entre emisor y receptor se realiza en cada palabra de código transmitido. Esta sincronización se lleva a cabo a través de unos bits especiales que definen el entorno de cada código.
También se dice que se establece una relación asíncrona cuando no hay ninguna relación temporal entre la estación que transmite y la que recibe. Es decir, el ritmo de presentación de la información al destino no tiene por qué coincidir con el ritmo de presentación de la información por la fuente. En estas situaciones tampoco se necesita garantizar un ancho de banda determinado, suministrando solamente el que esté en ese momento disponible. Es un tipo de relación típica para la transmisión de datos.
En este tipo de red el receptor no sabe con precisión cuando recibirá un mensaje. Cada carácter a ser transmitido es delimitado por un bit de información denominado de cabecera o de arranque, y uno o dos bits denominados de terminación o de parada.
  • El bit de arranque tiene dos funciones de sincronización de reloj del transmisor y del receptor.
  • El bit o bits de parada, se usan para separar un carácter del siguiente.
Después de la transmisión de los bits de información se suele agregar un bit de paridad (par o impar). Dicho Bit sirve para comprobar que los datos se transfieran sin interrupción. El receptor revisa la paridad de cada unidad de entrada de datos.



Síncrona

La transmisión síncrona es una técnica que consiste en el envío de una trama de datos (conjunto de caracteres) que configura un bloque de información comenzando con un conjunto de bits de sincronismo (SYN) y terminando con otro conjunto de bits de final de bloque (ETB). En este caso, los bits de sincronismo tienen la función de sincronizar los relojes existentes tanto en el emisor como en el receptor, de tal forma que estos controlan la duración de cada bit y carácter.
Dicha transmisión se realiza con un ritmo que se genera centralizadamente en la red y es el mismo para el emisor como para el receptor. La información se transmite entre dos grupos, denominados delimitadores (8 bits).

Características
Los bloques a ser transmitidos tienen un tamaño que oscila entre 128 y 1,024 bytes. La señal de sincronismo en el extremo fuente, puede ser generada por el equipo terminal de datos o por el módem. Cuando se transmiten bloques de 1,024 bytes y se usan no más de 10 bytes de cabecera y terminación, el rendimiento de transmisión supera el 99 por 100.
Ventajas
  • Posee un alto rendimiento en la transmisión
  • Los equipamientos son de tecnología más completa y de costos más altos
  • Son aptos para transmisiones de altas velocidades (iguales o mayores a 1,200 baudios de velocidad de modulación)
  • El flujo de datos es más regular.

También llamada Transmisión Sincrónica. A todo el conjunto de bits y de datos se le denomina TRAMA.

-Según el medio de transmisión.

Serie.
En una conexión en serie, los datos se transmiten de a un bit por vez a través del canal de transmisión. Sin embargo, ya que muchos procesadores procesan los datos en paralelo, el transmisor necesita transformar los datos paralelos entrantes en datos seriales y el receptor necesita hacer lo contrario.
En este tipo de transmisión los bits se trasladan uno detrás del otro sobre una misma línea, también se transmite por la misma línea.
Este tipo de transmisión se utiliza a medida que la distancia entre los equipos aumenta a pesar que es más lenta que la transmisión paralelo y además menos costosa. Los transmisores y receptores de datos serie son más complejos debido a la dificultad en transmitir y recibir señales a través de cables largos.
La conversión de paralelo a serie y viceversa la llevamos a cabo con ayuda de registro de desplazamiento.
La transmisión serie es síncrona si en el momento exacto de transmisión y recepción de cada bit está determinada antes de que se transmita y reciba y asíncrona cuando la temporización de los bits de un carácter no depende de la temporización de un carácter previo.
  

Paralelo
Las conexiones paralelas consisten en transmisiones simultáneas de N cantidad de bits. Estos bits se envían simultáneamente a través de diferentes canales N(un canal puede ser, por ejemplo, un alambre, un cable o cualquier otro medio físico). La conexión paralela en equipos del tipo PC generalmente requiere 10 alambres.
Estos canales pueden ser:
  • N líneas físicas: en cuyo caso cada bit se envía en una línea física (motivo por el cual un cable paralelo está compuesto por varios alambres dentro de un cable cinta)
  • una línea física dividida en varios subcanales, resultante de la división del ancho de banda. En este caso, cada bit se envía en una frecuencia diferente...
Debido a que los alambres conductores están uno muy cerca del otro en el cable cinta, puede haber interferencias (particularmente en altas velocidades) y degradación de la calidad en la señal...

  
-Según las señales transmitidas.

Analógica.
Una señal analógica es un tipo de señal generada por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo (representando un dato de información) en función del tiempo. Algunas magnitudes físicas comúnmente portadoras de una señal de este tipo son eléctricas como la intensidad, la tensión y la potencia, pero también pueden ser hidráulicas como la presión, térmicas como la temperatura, mecánicas, etc.
En la naturaleza, el conjunto de señales que percibimos son analógicas, así la luz, el sonido, la energía etc, son señales que tienen una variación continua. Incluso la descomposición de la luz en el arco iris vemos como se realiza de una forma suave y continúa.
Una onda sinusoidal es una señal analógica de una sola frecuencia. Los voltajes de la voz y del video son señales analógicas que varían de acuerdo con el sonido o variaciones de la luz que corresponden a la información que se está transmitiendo.